NPredModels#

class jolideco.models.NPredModels(background, calibration=None, *args, **kwargs)[source]#

Bases: ModuleDict

Flux components

Parameters:
  • background (~torch.Tensor) – Background tensor

  • calibration (NPredCalibration) – Calibration model.

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Methods Summary

evaluate(fluxes)

Evaluate npred model

evaluate_per_component(fluxes)

Evaluate npred model per component

from_dataset_numpy(dataset, components[, ...])

Create multiple npred models.

Methods Documentation

evaluate(fluxes)[source]#

Evaluate npred model

Parameters:

fluxes (tuple of ~torch.tensor) – Flux components

Returns:

npred_total – Predicted counts tensor

Return type:

~torch.tensor

evaluate_per_component(fluxes)[source]#

Evaluate npred model per component

Parameters:

fluxes (tuple of ~torch.tensor) – Flux components

Returns:

npreds – Predicted counts tensor per component

Return type:

dict ~torch.tensor

classmethod from_dataset_numpy(dataset, components, calibration=None)[source]#

Create multiple npred models.

Parameters:
  • dataset (dict of ~numpy.ndarray) – Dataset

  • components (FluxComponents) – Flux components

Returns:

npred_models – NPredModels

Return type:

NPredModel